ANNUAL SURVEY COVERING THE YEAR 1971

J. BROWN, D.G. COOPER and J. POWELL

Lash Miller Chemical Laboratories, University of Toronto, Toronto M5S 1A1, Ontario (Canada)

CONTENTS

	•	•	•	•	-	•	411
Reactions of lithium copper compounds						•	414
Coupling reactions		•	-			-	419
Additions to olefins	•	-		-	•		421
Other reactions	÷	-	÷			•	422
Rearrangements	•	•				•	423
Phosphine complexes	•	•	•	-	•	•	425
Silver	-	•		•			427
Ag-olefin complexes	-	•	•	-		•	427
AgI catalyzed rearrangements of strained hydrocarbons	-	-	-			•	430
Miscellaneous reactions	•	•	•	٠	•	•	433
Gold	•	•	٠	•	•	•	434
References	•	٠	-	•	•	•	437

A review on metal fulminate complexes which includes copper, silver and gold complexes has appeared¹.

COPPER

The novel tetramers, pentafluorophenyl copper and o-(trifluoromethyl)phenylcopper, have been prepared from the aryl Grignard reagent by metathesis with CuBr².

The synthesis of the substituted aryl copper compounds (1) has been reported³; in all cases, the substitution results in greater thermal stability. The expected coupling products result from reaction of (1) with acyl and allyl halides.

Octameric *m*-(trifluoromethyl)phenylcopper (2) has been prepared⁴ from the Grignard and cuprous bromide. On the basis of kinetic data, the authors suggest that the decomposition of (2) proceeds via pairwise loss of alkyl groups and formation of a Cu^0-Cu^1 cluster compound (3).

$$\begin{array}{ccc} R_8 Cu_8 \rightarrow R_2 + R_6 Cu_8 \rightarrow R_2 + R_4 Cu_8 \\ (2) & (3) \end{array}$$

Baica, Camus and Pellizer⁵ measured the ¹H NMR spectra of o-, m-, p-tolyl-, o-anisyl-, and 2,4-dimethylphenylcopper. The resonance peaks of the aromatic protons and of the methyl protons ortho to the metal are shifted downfield, those in meta and para positions are shifted upfield. The authors suggested that magnetic anisotropy centred between carbon and copper is the main influence on the proton shielding constants. The temperature dependence of the spectra indicated hindrance to rotation for the methyl groups ortho to the copper.

Adsorption properties of methyl-substituted and unsubstituted benzene on Cu^{II} montmorillonite surfaces have been investigated^{6,7} by spectroscopic methods. Benzene formed two types of complex: the first, green, with a higher degree of hydration involves a planar aromatic ring; the second, red, has a greatly distorted ring with the π electrons probably localized and has not been observed in homogeneous solution. The methyl-substituted benzenes form exclusively complexes of the first type.

In the IR spectra⁸ of the π -complexes formed from copper(I) chloride and the cyclic allenes, 1,2,6-cyclononatriene, 1,2,6-cyclodecatriene and 1,2,6,7-cyclodecatetraene, two new bands between 1650 and 1900 cm⁻¹ appear replacing the single band around 1950 cm⁻¹ in the uncoordinated allenes. Both monomeric and polymeric structures are possible.

The temperature dependence of the equilibrium constant and the thermodynamic parameters at 25° of equilibrium were determined of the equilibrium⁹:

 $R(aq) + Cu^{\dagger}(aq) \Rightarrow R Cu^{\dagger}(aq)$

 $R = C_3 H_6, C_4 H_8$

Also determined ¹⁰ was the equilibrium constant for the formation of the 1/1 copper-2-methyl-1,3-butadiene π -complex.

Complexes of copper(I) with dimethylmethyleneanmonium (4) have been found¹¹ to reversibly coordinate CO over the temperature range -40° to -15° . Similar behaviour is reported for NO.

Treatment of neat vinylmetallics with copper(I) chloride produced¹² the alkylvinylsilane and alkylvinyltin complexes of copper(I) chloride. d-d bonding from Cu¹ to the Group IV metal is invoked to explain the unusual stability of these complexes. Also, reaction of 1,4-cyclooctadiene (COD) with Cu¹ chloride gave¹³ [Cu(1,4-COD)Cl]₂, intermediate in stability between the analogous 1,3-COD and 1,5-COD complexes.

The thermal decomposition of the vinylic copper(I) complexes, *cis*- and *trans*-1-propenyl copper(I), *cis*- and *trans*-1-propenyl(tri-n-butylphosphine)copper(I) gave the products Cu⁰ and 2,4-hexadienes with retention of stereochemistry¹⁴. The authors postulate that decomposition does not proceed by a free radical mechanism and extend this conclusion to analogous reactions with other transition elements.

Zelonka and Baird¹⁵ have observed, but not isolated 1/1 five-coordinate adducts of anhydrous bis(hexafluoro-acetylacetonate)copper with phenylacetylene or several olefins.

Copper complexes, $RC \equiv CCuMCl_3$ (M = P, As; R = Ph, Bu) were synthesized ¹⁶ from copper(I) acetylides and MCl_3. The IR stretching frequency of the acetylenic moiety increases by about 40 cm⁻¹ with increased intensity. The UV spectra (300-700 nm) of acetylenic copper complexes indicate ¹⁷ that substituents on acetylene have little effect on the absorption between 370-420 nm. Absorption and photoconductivity spectra of the complexes, $CuC \equiv CMR_2$ (R = Ph, Bu; M = P, As), have been reported ¹⁸.

Cocondensation of copper with excess carbon monoxide has produced¹⁹ copper carbonyls (ν (C=O) at 1989 and 1975 cm⁻¹ assigned to terminal carbonyl groups).

Both mononuclear (5) and binuclear (6) ethylenediaminecopper(I) carbonyl complexes have been prepared²⁰. The IR spectra showed terminal and bridging carbonyl bands for (5) and (6) respectively. In methanol, the equilibrium between (5) and (6) favours (5) at temperatures above -30° .

Cu(CO)Cl
MeOH, Cu(en)(CO)Cl
(5)
Cu(CO)Cl
MeOH, cn,

$$-20^{\circ}$$

[(en)Cu(CO)₂Cu(en)]Cl₂
(6)

The hydration of 2-cyanopyridine to 2-pyridine carboxamide is catalyzed²¹ by bis-(ethylenediamine)copper(II) chloride dihydrate.

Stanko, Klimova and Brattsiv²² have prepared bis(tetraethylammonium)bis(dicarbaundecahydroundecaborato)cuprate(II).

Owen and Hawthorne reported²³ the preparation and characterization by IR, UV and ¹H NMR spectra of the air stable bis $[\sigma, \sigma-2, 2'$ -dicarboranylcopper(IV-m)]^{m-} (m = I (8), m = II (9)) complexes. The authors have proposed that (8) and (9) have the central metal atom bonded to the four carbon atoms of the polyhedra. The air stability of the complexes is attributed to the steric hindrance of the polyhedra and favourable coulombic interactions.

$$2 \text{ Li-C-C-Li} + \text{CuCl}_{2} \xrightarrow{\text{Et}_{2}O}_{40^{\circ}} 2 \text{ LiCl} + \text{Li}_{2}\text{Cu^{II}} [(B_{10}\text{C}_{2}\text{H}_{10})_{2}]_{2} \xrightarrow{\text{CuCl}_{2}}_{(9)}$$

$$(9)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(9)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

Cyclopentadienyl(t-butylisocyano)copper(I) (10) and indenyltris(t-butylisocyano)copper(I) catalyze²⁴ the reaction of cyclopentadiene homologs with carbonyl compounds producing the corresponding fulvene derivatives; (10) also catalyzes Michael-type reactions with active hydrogen compounds.

$$Cu_2O$$
-t-Bu−NC + $C_5H_6 \rightarrow (C_5H_5)$ (t-Bu−NC) Cu^1
(10)

Other Cu^I systems²⁵ catalyzed the codimerization of α,β -unsaturated carbonyl and nitrile compounds as well as Michael-addition reactions.

Treatment of cupric chloride or bromide with dicyano geminally substituted ethylene gave²⁶ a product with each CN group coordinated to one CuX unit.

$$CuX_2 + Me_2C = C(CN)_2 \xrightarrow{MeOH} Me_2C = C < CN - CuX CN - CuX$$

Braterman and Wilson²⁷ have reported the preparation of the insoluble complexes, $[(\pi - C_5 H_5)_2 Ti(SR)_2 CuX]_n$ and the chelating disulphide copper halides, $(RSCH_2 CH_2 SRCuX)_n$ (*n* unknown) (R = Me, Ph; X = Cl, Br). The electronic spectra suggest that a Cu-Ti bond exists.

Reactions of lithium copper compounds

(a) With unconjugated alkenes and alkynes

Methylation of allenic diphenylphosphine oxide using LiCuMe₂ (11) has been reported²⁸. With higher reaction temperatures, more of the coupled product was obtained.

Coupled products were also obtained²⁹ from the reaction of lithium phenylacetylene copper with alkyl halides.

BuLi + PhC=CCu $\xrightarrow{\text{THF}}$ (PhC=CCu)Li $\xrightarrow{\Delta}$ PhCH=CH-CH=CH-Ph

(b) With unsaturated ketones

Näf and Degen³⁰, investigating the conjugate addition of (*cis*- or *trans*-1-alkenyl)-CuLi X_n to α,β -unsaturated carbonyl compounds and to *cis*- or *trans*-ethylenic carbonyl compounds, have found stereospecific retention of the double bond geometry in the products.

Because of the excellent stereospecific methylation, (11) has been used extensively in organic syntheses³¹⁻³⁷.

 $R = CH_3, C_2H_5$

(ref. 36)

(ref. 37)

(100% yield of methyl in 3 position but 3 isomers $\approx 1/1/1$) Casey and Boggs³⁸ suggested that the addition of isomeric lithium divinylcuprates to α,β -unsaturated ketones proceeds without free radical intermediates though the product formation is compatible with a free radical (pathway a) or a caged free radical mechanism (pathway b).

Stereospecificity was also evident in the copper(I) catalyzed additions to 4-methyl-2hexenone³⁹.

An investigation⁴⁰ into the regioselectivity of the conjugate addition of (11) to cyclohexadienones suggested that conjugation in the transition state does not cause a strong directive effect while steric control does account for the relative amounts of 1,4 and 1,6 addition products.

(c) With unconjugated carbonyl compounds

The synthesis of sterically hindered ketones from Grignard reagents has been catalyzed⁴¹ by cuprous halides.

(d) With acyl chlorides

Cain⁴² used (11) for bridgehead substitution on a substituted [2.2.0]bicyclohexane.

With both alkyllithium and -magnesium compounds and Cu^I, Loung-Thi *et al.*⁴³ prepared substituted ketones.

(e) Miscellaneous

Dubois et al.⁴⁴ have investigated the optimum conditions for the cuprous halide catalyzed synthesis of hindered aliphatic ketones by condensation of either alkyllithium or alkylmagnesium bromide with acyl chlorides. Four factors were considered: the influence and nature of the CuX; influence of the metal (*i.e.*, Li or Mg); mode of addition of reagents; reaction temperature.

Using the butyllithium-cupric chloride system, ring closure to form thienothiophenes (12) has been studied⁴⁵.

Wieland and Johnson⁴⁶ have investigated the addition reactions of 3,4-epoxycyclohexene (13) with organolithium and lithium organocopper compounds. With LiCuR₂ (R = Me, Ph), high *trans* selectivity was observed for both 1,2 and 1,4 additions. With

R = t-butyl, the mechanism proposed for the conjugate addition involves an intermediate radical anion.

3.3'-Diethoxy-2-pentanone (14) and acetophone were prepared⁴⁷ using (11).

Substitution of acyl chlorides has been achieved³⁹ using phenylmagnesium bromidecopper iodide systems.

RCOC1
$$\xrightarrow{nC_6H_5MgBr}$$
 RCOC₆H₅
R = C₆H₅, C₆H₁₁; n = 1,2

Coupling reactions

Compounds of copper(I) catalyzed⁴⁸⁻⁵⁰ coupling reactions involving alkyl Grignard reagents and alkyl halides.

BuMgBr + 1-C₆H₁₁Br $\xrightarrow{Cu^{I}}$ C₁₀H₂₂

Normant and Bourgain⁵¹ showed that the reaction of organocopper compounds with substituted acetylene resulted in a dimerization, the product of two stereospecific reactions.

Several syntheses have been reported 52-55 using substituted acetylenic copper as a coupling reagent.

(ref. 53)

References p. 437

ð

With heterocyclic copper and 1,3,5-trinitrobenzene, only the simple coupled product (15) was obtained⁵⁶.

In the coupling reaction of copper(II) carboxylates with Ph_2CN_2 the nature of the product was dependent⁵⁷ on the carboxylate substituent.

Rathke and Lindert⁵⁸ have reported a convenient synthesis of dialkylsuccinate esters via copper promoted coupling of ester enolates.

The copper(II) chloride-lithium aluminum hydride system has been used⁵⁹ to hydrogenate carbon-sulphur bonds.

$$p$$
-MeOC₆H₄CH(SEt)Ph $\xrightarrow{CuCl_2}$ p -MeOC₆H₄CH₂Ph
2 LiAlH₄ p -MeOC₆H₄CH₂Ph

Addition to olefins

(a) Halogenation

Koyano and Watanabe have studied the kinetics and mechanism of chlorination⁶⁰ and bromination⁶¹ of olefins by cupric halide. Chlorination of 1-octene in methanol yielded dichloro as well as monochloro methoxy products. The authors proposed that the chlorination involves an initial formation of a copper chloride olefin complex followed by competitive attack of chloride and methoxy ions. The bromination was suggested to proceed via a bridged brominium ion type species.

$$RCH=CH_{2} + CuBr_{2} \iff \begin{bmatrix} R-CH=CH_{2} & RCH-CH_{2} \\ \vdots & \vdots \\ CuBr_{2} & Br\delta^{+} \\ \delta^{-}CuBr \end{bmatrix}$$

In methanol, methoxy-substituted products are found.

Chloroiodo products were formed⁶² in the reaction of iodine and cupric chloride with olefins.

$$RCH=CHR + I_2 + CuCl_2 \longrightarrow RCH-CHR$$

With conjugated diolefins, the major product is the dichloride formed by halogen exchange after the production of the chloroiodo addition compound.

Baird and Surridge⁶³ reported two preparations of dehydroadiponitrile (16) using cupric salts.

 $CH_{2}=CH-CH=CH_{2} + I_{2} + 2CuCN \longrightarrow ICu \cdot NCCH_{2}CH=CHCH_{2}CN \cdot CuI$ (17) $CH_{2}=CH-CH=CH_{2} + 2CuBr_{2} + 2CuCN \longrightarrow$ $BrCu \cdot NCCH_{2}CH=CHCH_{2}CN \cdot CuBr + 2CuBr$

(17) or (18) + 2HCN
$$\xrightarrow{H_2O}$$
 2CuCN + X₂ + H₂ + NCCH₂CH=CHCH₂CN (16)

(18)

Vicinal halogenation of the cyclic nonconjugated alkenes, hexene⁶⁴ and 1,3- and 1,5-cyclooctadiene⁶⁵ was achieved by reaction with cupric halides.

(b) Miscellaneous

Cuprous chloride catalyzes the stereospecific hydrosilation of styrene⁶⁶, and the ring closing reactions of CH_2N_2 with pyrrole⁶⁷; cupric chloride-ethanolamine catalyzed the addition of polyhaloalkanes to substituted olefins⁶⁸; PdCl₂-CuCl₂ in acetate buffer catalyzed the chlorination of bicyclic olefins⁶⁹.

Acetylenic alcohol has been converted into substituted allene⁷⁰.

Various substituted cyclopropane compounds have been prepared⁷¹ from olefins and α -chloro compounds using the copper(I) oxide-isonitrile system as a catalyst.

The copper(II) chloride catalyzed addition of substituted sulphonyl chlorides to alkenes⁷² and alkynes^{73,74} improved the syntheses of *trans*-1-aryl-2-(arenesulphonyl) ethanes and β -chlorovinylsulphone.

 $RSO_2CI + R'C \equiv CR'' \xrightarrow{CuCl_2} RSO_2CR' = CCIR''$

Amiel⁷⁵ has proposed that the additions proceed through a sulphonyl radical attack on the multiple bond followed by addition of the halide from the copper halide complex.

Other reactions

Bromide has been replaced by cyanide using copper(I) cyanide in heterocyclic⁷⁶, polycyclic⁷⁷ and alkenic⁷⁸ systems.

Lizzani et al.⁷⁹ demonstrated from IR and ¹H NMR spectra that the addition of copper to ethanolic solutions of allylic halides yielded ethylenic ethers, not biallylic products.

When various phenylthallium(III) compounds reacted⁸⁰ with copper(II) chloride or copper(I) chloride, the main product was chlorobenzene. Solvent effects were large and a four center reaction was proposed. A similar ligand transfer of halides and pseudohalides of copper(II) to alkyl radicals has been reported⁸¹. With trialkylboron compounds, ligand transfer from Cu^{II} chloride and bromide has been achieved⁸² requiring two copper moieties per alkyl group.

 $B(alkyl)_3 + CuX_2 \xrightarrow{H_2O} alkyl-X$

Cummings and Milner⁸³ suggested the ligand transfer reaction of copper(II) halides with substituted aromatic hydrocarbons proceeds via the formation of a radical cation followed by substitution.

HArMe
$$\xrightarrow{\text{CuCl}_2}$$
 HArMe⁺ $\xrightarrow{\text{CuCl}_2}$ ClArMe

Studies on the polymerization of methyl methacrylate have indicated⁸⁴ that the catalytic system Et_3N-Cu^ICl may operate via a radical initiation; with β -diketonato complexes of Cu^{II} , the polymerization is accelerated⁸⁵ by the addition of 1,10-phenanthroline to the system.

Rearrangements

Several copper-catalyzed rearrangements of hydrocarbon compounds were reported⁸⁶⁻⁸⁹.

An example of the well known copper-catalyzed azide elimination was⁹⁰ the decomposition of dimethylphosphono-substituted diazoalkanes.

 $XCH_2C(N_2)P(O)(OMe)_2 \xrightarrow{CuX} XCH_2\ddot{C}P(O)(OMe)_2$

The authors proposed that the elimination proceeds through initial coordination of the azide-bearing carbon center to the copper complex, followed by the elimination of the azide with the subsequent cleavage of the copper-carbon bond.

Organocopper intermediates have been postulated in the oxidation of t-butyl alcohol by copper(II)⁹¹.

Mochida et al.^{92,93} report the oxidative behaviour of Cu^{II}-Y molecular sieves with cyclohexane and propylene yielding predominantly carbon dioxide and small amounts of partially oxidized hydrocarbon.

Reich and Jadrnicek⁹⁴ have determined that the copper(II) acetylacetonate complex is the least effective catalyst in a series of analogous transition metal complexes for the autooxidation of atactic propylene film (measured by carbonyl formation).

The use of a Cu^{II} cocatalyst in a 5-500 molar excess in the Pd^{II} catalyzed preparation of α,β -unsaturated carbonyl compounds enhanced⁹⁵ the stereoselectivity.

A study⁹⁶ on the comparative activity of metal sulphates in the dehydrogenation of haloethanes on silica gel at 300°C, gave a correlation of the ratio of log ([*trans*-1,2-product]/ [*cis*-1,2-product]) to log ([1,1-product]/[1,2-product]). The log ([*trans*-1,2-product]/ [*cis*-1,2-product]) decreased as the electronegativity of M^{n+} increased.

Wulfman et al.⁹⁷ suggested that the homogeneous copper(I) catalysis of the decomposition of dimethylmalonate proceeded by an attack of the diazo compound upon the complex, displacement of the associated anion, loss of nitrogen from the resulting diazonium ion, displacement of the carbene by the anion and subsequent addition to an olefin. The leaving group ability of the anion influences the effective spin multiplicity distribution of the carbenoid species. Product distributions⁹⁸ of the copper(I) catalysed decomposition of diazomalonic esters with cyclohexene using phosphite copper iodide catalysts with varied amounts of cuprous and cupric chloride added have been reported.

Jenkins and Kochi⁹⁹ have demonstrated that the rates of ligand transfer oxidation of alkyl radicals, such as cyclopropenylmethyl, allylcarbinyl, cyclobutyl, by copper(II)— X_2 , (X = SCN, Cl, Br) approach the diffusion controlled limit with second order rate constants in the order 10^8 - 10^9 .

The oxidation of ethanol by peroxydisulphate¹⁰⁰ modified by copper(II) has been found to obey the rate law, rate = $K_{3/2} [S_2O_8^{2^-}][Cu^{11}]^{1/2}$. Cu¹¹Cl₂ also enhanced¹⁰¹ the nickel-catalyzed reactions of benzyl alcohol.

Disubstitution of diacid chlorides has been achieved¹⁰² using perhaloarylcopper compounds.

$$\begin{array}{cccc} O & O & O \\ \mathbb{R}Cu + Cl - C - R' - C - Cl & \longrightarrow & R - C - R' - C - R \end{array}$$

 $R = C_6H_5$, C_6Cl_5 , 2,3,5,6-tetrachloro-4-pyridyl

Phosphine complexes

Conductivity and molecular weight studies¹⁰³ on the bis(triphenylphosphine)metaldiethyldithiocarbamate (metal = Au^I , Ag^I , Cu^I) indicate that they are non-electrolytes and that dissociation occurs, increasing in the order Cu < Ag < Au.

 $(Ph_3P)_2M(R_2dtc) \neq (Ph_3P)M(R_2dtc) + Ph_3P$

From X-ray diffraction data¹⁰⁴, the crystal structure of diazido- μ -1,2-bis(diphenylphosphino)ethanebis(1,2-bis(diphenylphosphino)ethane)dicopper(I) (19) has been determined. The three copper-phosphorus bond lengths are the longest observed in copper(I) phosphine complexes. With single crystal X-ray data, the crystal structure of μ -diazidotetrakis(triphenylphosphine)dicopper(I) was shown¹⁰⁵ to involve two azido bridges.

A new synthetic method¹⁰⁶ for copper hydrides has been developed.

$$(i C_3 H_7 O)_3 PCuCl + (C_2 H_5)_3 SnH \rightarrow (i C_3 H_7 O)_3 PCuH + (C_2 H_5)_3 SnCl$$

The molecular structure of hexameric triphenylphosphine copper hydride complex (20) prepared from a DMF solution of $[Ph_3PCuCl]_4$ and sodium trimethoxyborohydride was reported ¹⁰⁷.

From the known structures of $(Ph_3P)_2CuX$ (X = bidentate monoanion), several factors influencing the stereochemistry have been deduced¹⁰⁸.

Comparison of the variable temperature ¹H NMR spectra of $L_2CuB_3H_8$ (L = PPh₃, (PhO)₃P) confirm¹⁰⁹ that the intramolecular exchange mechanism involves Cu-B₃H₈ bond breakage as the rate-determining step.

Efficient boron hydrogen spin decoupling due to quadrupole-induced ¹⁰B and ¹¹B spin relaxation has been observed ¹¹⁰ in $(Ph_3P)_2CuL$ ($L = BH_4$, B_3H_8). Intramolecular exchange is retarded presumably because of the strength of the Cu-H bond.

The complexes LAuX and diphosAu₂X₂ (L = PPh₃, AsPh₃; X = NCO⁻, SCN⁻, SeCN⁻) have been prepared¹¹¹ and the pseudohalide bonding modes determined from IR spectra. Bromine can be oxidatively added to these complexes.

426

Blundell and Powell¹¹² have determined the molecular structures of $Ph_3PAu[Co(CO)_4]$ (21) and $[Co(CO)_4] Ag[(Me_2AsPh)_2AsMe]$ (22).

The new complexes LAuFe(CO)₃NO and Ph₃ PAuFe(CO)₂(NO)L (L = phosphine, phosphite) have been reported ¹¹³. In donor solvents, the complexes dissociate. The cluster compounds Au₁₁L₇X₃¹¹⁴ (L = tris(*p*-chlorophenyl)phosphine, X = I, SCN, CN; L = tris-(*p*-methylphenyl)phosphine, X = SCN; L = tris(*p*-fluorophenyl)phosphine, X = SCN, I) and [Au₉L₈]X₃¹¹⁵ (L = triarylphosphine, X = CN, SCN) have been prepared.

SILVER

Ag-olefin complexes

In the crystal structure¹¹⁶ of *exo*-tricyclo [3.2.1.0] oct-6-enesilver nitrate (23), the silver ion was found to be roughly tetrahedrally coordinated to the olefin and three nitrate groups.

Allen and Rogers¹¹⁷ determined the molecular structure of the 1/1 adduct (24) of germacratriene with silver nitrate. All *trans* geometry for (24) was confirmed with each Ag⁺ ion complexed to two double bonds in different molecules—this chain crosslinked by chains of nitrate and Ag⁺ ions.

The relative arrangement of the Ag^+ , NO_3^- ions and cyclo-olefin molecules was similar in the molecular structures¹¹⁸ of *cis*-cyclodecene $\cdot 0.5$ AgNO₃ and 1,1,4,4-tetramethyl*cis*-7-cyclodecene $\cdot 0.5$ AgNO₃, but the conformation of the ring skeletons was different.

In the structure¹¹⁹ of di-*trans*-cyclododecenesilver nitrate, the non-planar distortion of the rings was attributed to electronic interaction with the metal.

The structure ¹²⁰ of bis(cyclohexylbenzene)silver(I) perchlorate (25) resembled a halfopen hinge with the leaves of the hinge being the organic groups. The Ag^{I} is threecoordinate: one bond with each aromatic ring and one bond to a perchlorate oxygen.

Analysis¹²¹ of the crystal structure of the silver complex (26) of the antibiotic X-537A (27) revealed a dimeric cylindrical-like structure with a hydrophobic exterior and two Ag^{I} ions on the inside, each Ag^{I} complexed to five oxygen atoms and one phenyl ring.

Photolysis of the silver perchlorate-1-methylene cyclohexane complex in solid state or methanolic solution led¹²² to isomerization to silver perchlorate-1-methylcyclohexene; further irradiation produced exclusively an *exo-trans-exo* dimer. Similar isomerization and less stereospecific dimerization were observed in the photolysis of the silver perchlorate β -pinene complex.

Tayim and Kharboush prepared¹³ the $[Ag(1,4-COD)Ag]^{2+}(NO_3)_2^{-}$ complex with a 1,4-COD bridge between two silver ions. The novel π -complexes of 1,2,6-cyclodecatriene and 1,2,6,7-cyclodecatetraene with Ag^I were assigned⁸ monomeric or polymeric and monomeric structures respectively. The products of the thermal decomposition of the 2-butenylsilver(1) complex discounted the possibility of a free radical mechanism.

In the calculation of thermodynamic parameters $(0-40^{\circ}C, I = 0.20 M)$ for the formation of silver complexes Ag₂L, AgL, AgL₂ of saturated and unsaturated alkylthio and alkylseleno (RXCH₂CO₂⁻, X = S, Se; R = butyl, 1-butenyl, 1-pentenyl) acetic acids, it was shown^{123,124} that coordination of an olefin moiety to silver is strongly favored by enthalpy but disfavored by entropy. This difference was more pronounced for X = Se.

Solodar and Petrovich¹²⁵ have reported solvent dependent equilibrium constants for silver olefin complexes (olefin = norbornene, cyclohexene, 1-methylcyclohexene) measured essentially from the downfield shifts ($\Delta\delta$) in ¹H NMR spectra of the olefinic protons with the addition of excess AgBF₄. The possibility of diolefin complexes was considered negligible. The order of thermodynamic stability for some AgBF₄ olefin complexes was found¹²⁶ to be AgBF₄ · 2C₃H₈ > AgBF₄ · 2C₂H₄ > AgBF₄ · C₂H₃Cl > AgBF₄ · 2C₂H₃F and was rationalized on the basis of the lower basicity and the larger dipole of the haloolefins.

Petrov *et al.*¹²⁷ calculated the equilibrium constant for the complexation of butadiene with Ag^{I} to be 45.5-47.8.

Substituent effects on the equilibrium constant for the complexation of Ag^I with *endo*and *exo-5*-substituted norbornene and ω -substituted 1-alkenes were investigated ¹²⁸. Comparison of the experimental results with those calculated from the Kirkwood-Westheimer-Tanford cavity method proved only marginally satisfactory.

Equilibrium measurements were made on the AgNO₃-PhC \equiv CH¹²⁹ (5.4 \cdot 10⁷ l³ mole⁻³ at 25°C) and on the silver nitrate-isobutene¹³⁰ systems (polarographic 59.3 mole⁻¹ at 25°C).

ESR spectra of 1-methyl-cyclopentadienylsilver radical and of the radicals formed from the 1,3- and 1,4-cyclohexadiene-AgClO₄ and $-AgBF_4$ complexes, indicated¹³¹ the presence of the 1-methyl-3-cyclopentyl radical and probably the same cyclopentadienylsilver radical.

Treatment of silver oxide with OPR_2CHN_2 resulted ¹³² in formation of a metal-carbon σ -bond.

Ag^I catalyzed rearrangements of strained hydrocarbons

A review of the Ag^I promoted steric rearrangements in saturated alicyclic molecules was published¹³³ (43 references).

Ag^I catalyzed rearrangements¹³⁴⁻¹⁴⁰ of strained carbon σ -bonds of the general types reported are illustrated below:

Since the rates of rearrangement of *endo-endo*, *endo-exo* and *exo-exo* substituted seco-cubanes¹³⁵ were comparable, the possibility of a concerted mechanism was discounted.

Koser¹⁴¹ observed a linear free energy relationship between the reported rate constants for Ag^I catalyzed cubane (28)-cuneane rearrangements and the Taft σ^* polar substituent constants.

Detailed product distribution and kinetic studies^{139,140} on Ag^I promoted rearrangements of the *cis*- and *trans*-1-cyclopropyl-1-iodopropene, 1-cyclopropyl-1-iodoethylene, 3,4-pentadienyl iodide and 3,4-hexadienyl iodide have confirmed the existence of a cyclopropylvinyl type cationic intermediate.

Two mechanisms have been proposed for the Ag^I catalyzed rearrangements of bicyclobutane. Sakai suggested^{142,143} that the initial one bond cleavage intermediate A, an argento carbonium ion, can lead to the various products formed.

Paquette *et al.* ¹⁴⁴⁻¹⁴⁶ proposed a different mechanism on the basis of kinetic data. In some cases, this implies complexation of Ag^{I} to an sp^{2} hybridized electron pair. Deuterium isotope effects in the rearrangements of tricyclo [4.1.0.0^{2,7}]heptanes failed to confirm the argento carbonium ion mechanism involving a 1-3 and 1-2 bond cleavage, while favoring a mechanism involving a cleavage of an edge bicyclobutane bond, if possible remote from bulky substituents.

One rearrangement was caused¹⁴⁷ by ionization of a methoxyl substituent and not by an Ag^I strained o-bond interaction.

Ag¹ catalyzed intramolecular rearrangements of some non-strained systems have been reported. dl-2,2'-disilver-3,3'-bicyclohexenyl (29) rearranged ¹⁴⁸ to *cis*- and *trans*-tricyclo-[6.4.0.0^{2,7}]dodeca-2,12-dienes, presumably through a transition state with the two carbon atoms coordinated to one Ag atom. A reexamination of the catalytic process has lead Warner to suggest ¹⁴⁹ that two silver atoms are involved in the rearrangement of mono-

homotropylium ions (route a). Based on the catalytic action of the Ag^I ions on the cycloadditions of benzyne, Paquette has proposed¹⁵⁰ an alternate pathway involving solely a

432

AuCl₂]⁻. On the basis of line broadening in the ¹H NMR spectra, the exchange properties of these complexes were determined.

The synthesis and reactions of the dimethyl gold complexes $[(CH_3)_2AuCIX](X = PR_3, AsR_3)$; and $[(CH_3)_2Au(PR_3)_2]^+Cl^-$ were reported ¹⁶³. Structural information was obtained from IR and ¹H NMR spectra. By a similar bridgehead cleavage and a subsequent alkylation, $[(\sigma - C_5H_5)(CH_3)_2AuPPh_3]$ has been prepared ¹⁶⁴. The stereochemically non-rigid cyclopentadienyl group is σ -bonded; no intermolecular exchange occurs. Replacement of Cl⁻ in $[(CH_3)_2AuCl(PR_3)]$ by CH₃ or $\sigma - C_5H_5^-$ resulted in a decrease in the Au-C bond strength as indicated by a corresponding decrease in the Au-C stretching frequency.

The dimeric pseudohalide complexes $[(CH_3)_2AuX]_2 X \approx NCSe$, NCO, have been synthesized ¹⁶⁵ and characterized by laser Raman, IR and ¹H NMR spectra. The selenocyanate

was assigned C_{2h} symmetry, the cyanate D_{2h} . Bridge splitting reactions of these complexes and of the tetrameric dimethyl gold cyanide complex were described.

Schmidbaur *et al.*¹⁶⁶ on the basis of ¹H NMR spectra of $[CH_3Au^IPR_3]$ and $[(CH_3)_3$ -Au^{III}PR₃] solutions containing free phosphine proposed an associative mechanism for the exchange process involving an sp^2 hybridized Au^I intermediate and a dsp^3 hybridized Au^{III} intermediate respectively. Thermodynamic parameters were computed ¹⁶⁷ for the methyl gold phosphine complex but not for the Au^{III} complex since the exchange process was too slow. For the substitution of $[Me_3P-AuCH_3]$ (32) the following reactivity order was found ¹⁶⁸: Ph₃P > (C₂H₅)₃P > (CH₃)₃P \gg Ph₃As. With the phosphine R₂P-CH₂-CH₂-PR₂ (R = CH₃, Ph) a dimeric product (33) was formed with 2-coordinate Au^I. Substitution reactions of (Me)₃Au(PMe₃) by PPh₃ were very slow.

A Au^I acetate complex (34) has been prepared ¹⁶⁹ in 90% yield.

PhLi + ClAuPPh₃
$$\xrightarrow{1 \text{ atm } A} \xrightarrow{H_2O}$$
 PhAuPPh₃
(93%)
(93%)
(93%)
(90%)
(34)

The preparation¹⁷⁰ and properties of bromo- and iodobis-pentafluorophenyltriphenyl-phosphinegold(III) were described.

$$(C_6F_5)_2$$
AuClPPh₃
 $MX = KBr, LiBr, KI, Nal$
 $(C_6F_5)_2$ AuXPPh₃ $\xleftarrow{(C_6F_5)_2 TiX}$ AuPPh₃

Su¹⁷¹ combined energy correlation diagrams and a simple perturbation method to extend the Woodward-Hoffmann rules for sigmatropic reactions to stereochemically non-rigid organometallic compounds, *e.g.* (C_5H_5)AuPPh₃.

Observation of the ³¹P-H coupling in the variable temperature ¹H NMR spectra of $[(C_5H_4R)(PPh_3)Au]$ (R = H, CH₃) led¹⁷² to the conclusion that Au^I was σ -bonded. Further evidence of the lack of affinity of Au^I to π -bond was provided¹⁷³ by the failure of $[Cl(PPh_3)Au]$ to react with either di- or tetracyanoethylene.

 σ -bonded silver atom (route b). Equimolar amounts of AgBF₄ have catalyzed¹⁵¹ the 100% conversion of *cis, cis, trans*-tetramethylocta-2,4,6-triene to hexamethylbenzene.

Miscellaneous reactions

The coupling 152 of alkyl groups from the reaction of alkyl halides and Grignard reagents catalyzed by Ag^I halide is thought to operate via organosilver compound formation; the rate-determining step being the reoxidation of the Ag⁰. Selective formation of alkyl radicals from the alkyl halide was confirmed by trapping experiments.

 $\begin{array}{rcl} R'MgX + AgX & \longrightarrow & R'Ag + MgX_2 \\ \\ RAg, R'Ag & \longrightarrow & [R-R, R'-R, R'-R'] + 2Ag \\ \\ Ag + R-X & \xrightarrow{slow} & R \cdot + AgX \\ \\ R \cdot + Ag & \longrightarrow & RAg \end{array}$

Reaction of the silver salt of 2-thiouracil with 2,3,4,6-O-acetylglucopyranosylbromide (ABG) gave¹⁵³ only the S(2), O(4)-diglucoside (30).

An epoxide intermediate has been proposed ¹⁵⁴ for the AgClO₄ catalyzed solvolysis of 2-chlorocyclohexanone-1-¹⁴C in EtOH-H₂O to 2-(EtO)-cyclohexanone-x-¹⁴C.

Tritium labelling of the acetyl groups in polyacetates has been achieved 155 by a T₂O/ pyridine/AgF system.

Silver-catalyzed oxidative decarboxylation of acids by peroxydisulphate has been used¹⁵⁷ as a source of alkyl radicals.

$$2Ag^+ + S_2O_8^- \longrightarrow 2Ag^{2+} + 2SO_4^{2-}$$

R-COOH + Ag^{2+} \longrightarrow $R \cdot + CO_2 + H^+ + Ag^+$

The preparation and reactions of a silver organomanganese complex were reported 158.

Ogden reported¹⁹ evidence from IR spectra for the existence of silver carbonyl compounds.

Among various silver(I) salts tested, $AgBF_4$ and $AgClO_4$ were effective⁸⁸ catalysts in the conversion of hexamethyl Dewar benzene to hexamethylbenzene.

GOLD

A review ¹⁵⁹ on $S_E 1(N)$ mechanism in organometallic chemistry included considerations of organogold phosphine complexes.

Bennett et al. $^{160, 161}$ have reported the bromination reactions of AuBr $[o-CH_2=CH-C_6H_4-PPh_2]$ (31). The mechanism proposed involved a concerted attack on the metal complex by a polarized bromine molecule.

Stocco and Tobias¹⁶² have prepared and characterized by Raman, IR and ¹H NMR spectra, the square planar complexes [(CH₃)₂AuXY]: X = Cl, Y = pyridine, PPh₃, AsPh₃; SbPh₃; X = SCN, Y = pyridine, PPh₃, AsPh₃; and the complexes [(CH₃)₂AuX₂]Y: Y = ClO₄, X = PPh₃, AsPh₃; SbPh₃; Y = Cl, X₂ = diphos; and [(CH₃)₂Au(diphos)]⁺[(CH₃)₂. Halide phosphinegold(I) complexes were prepared ¹⁷⁴ by halogenation of [Ph₃PAu- $(C_5H_4FeC_5H_5)$].

$$Ph_{3}PAu(C_{5}H_{4}FeC_{5}H_{5}) \xrightarrow[-20]{X_{2}} Ph_{3}PAuX + XH_{4}C_{5}FeC_{5}H_{5}$$

$$(70\%) (55\%)$$

$$(X = Br, Cl, I)$$

Gilmore and Woodward¹⁷⁵ have determined the molecular structure of $[(Ph_3P)Au(CF_3)-C_2(CF_3)AuPPh_3]$ (35).

Waters *et al.*¹⁷⁶ have isolated and characterized the complexes $[Au(mnt)_2][(n-Bu)_4N]_2$ (36) mnt²⁻ = *cis*-1,2-dicyanoethylenedithiolate and $[(\pi-(3)-1,2-B_9C_2H_{11})_2Au][Et_4N]_2$ using the mixed valence $[(PhCH_2)_2SAuX \cdot (PhCH_2)_2SAuX_3] X = CI$, Br for (36).

Indirect equilibrium studies on the halide exchange reaction of $[(CN)_3ClAu]^-$ with iodide indicated ¹⁷⁷ that $k = 4.71 \cdot 10^4$ and that hydration of both the iodo and chloro complexes is less favored.

Negoiu and Baloiu¹⁷⁸ synthesized the linkage isomers of the $[Au(CN)_2(SCN)_2]^-$ complex (37).

$$[\operatorname{Au}(\operatorname{CN})_2\operatorname{Cl}_2]^- + 2\operatorname{SCN}^- \rightarrow [\operatorname{Au}(\operatorname{CN})_2(\operatorname{SCN})_2]^- + 2\operatorname{Cl}^-$$
(37)

The isothiocyanate was isolated in methanolic solution (IR spectrum bands: 800, 2075 and 2145 cm⁻¹), the more stable thiocyanate from aqueous solution (IR spectrum bands: 705, 2135 and 2150 cm⁻¹).

The activity of $(Ph_3P)AuCl$ as a homogeneous catalyst for the oxidation of cyclohexene was found¹⁷⁹ to be low.

REFERENCES

- 1 W. Beck, Organometal. Chem. Rev., Sect. A, 7 (1971) 159.
- 2 A. Cairneross, H. Omura and W.A. Sheppard, J. Amer. Chem. Soc., 93 (1971) 248.
- 3 G. Van Koten, A.J. Leusink and J.G. Noltes, Inorg. Nucl. Chem. Lett., 7 (1971) 227.

- 4 A. Cairneross and W.A. Sheppard, J. Amer. Chem. Soc., 93 (1971) 247.
- 5 A. Baica, A. Camus and G. Pellizer, J. Organometal. Chem., 26 (1971) 431.
- 6 T.J. Pinnavaia and M.M. Mortland, J. Phys. Chem., 75 (1971) 3957.
- M. Mortland and T.J. Pinnavaia, Nature, Phys. Sci., 229 (1971) 73. 7
- G. Nagendrappa, G.C. Joshi and D. Devanprabha Kara, J. Organometal. Chem., 27 (1971) 421. 8
- 9 A.L. Oleinikova, O.N. Temkin, M.I. Bogdanov and R.M. Flid, Zh. Fiz. Khim., 44 (1970) 2418.
- 10 A.L. Oleinikova, O.N. Temkin, M.I. Bogdanov and R.M. Flid, Neftekhimiya, 10 (1970) 849.
- 11 R. Mason and G. Rucci, Chem. Commun., (1971) 1132.
- 12 J.W. Fitch, D.P. Flores and J.C. George, J. Organometal. Chem., 29 (1971) 263.
- 13 H.A. Tayim and M. Kharboush, Inorg. Chem., 10 (1971) 1827.
- 14 G.M. Whitesides, C.P. Casey and J.K. Kreiger, J. Amer. Chem. Soc., 93 (1971) 1379.
- 15 R.A. Zelonka and M.C. Baird, J. Organometal. Chem., 33 (1971) 267.
- 16 A.M. Sladkov and I.R. Gol'Ding, Izv. Akad. Nauk SSSR, Ser. Khim., 11 (1970) 2644.
- P.P. Cherovko and R.V. Kucher, Spektrosk. At. Mol., (1969) 411. 17
- 18 V.S. Myl'nikov and A.N. Dun'e, Opt. Spektrosk., 31 (1971) 405.
- 19 J.S. Ogden, Chem. Commun., (1971) 978.
- 20 G. Rucci, C. Zanzottera, M.P. Luchi and M. Camia, Chem. Commun., (1971) 652.
- 21 S. Komiya, S. Suziki and W. Watanabe, Bull. Chem. Soc. Jap., 44 (1971) 1440.
- 22 V.D. Stanko, A.D. Klimova and V.A. Brattsev, Zh. Obshch. Khim., 40 (1970) 1523.
- 23 D.A. Owen and M.F. Hawthome, J. Amer. Chem. Soc., 93 (1971) 873.
- 24 T. Saegusa, Y. Ito and S. Tomita, J. Amer. Chem. Soc., 93 (1971) 5656.
- 25 T. Saegusa, Y. Ito, H. Kinoshita and S. Tomita, J. Org. Chem., 36 (1971) 3316.
- 26 S.K. Smirnov, O.G. Strukov, S.S. Dubov, A.M. Gribov and E.L. Gal'Perin, Zh. Neorg. Khim., 16 (1971) 2173.
- 27 P.S. Braterman and V.A. Wilson, J. Organometal. Chem., 31 (1971) 131.
- 28 J. Berlan, M.L. Capmau and W. Chodkiewicz, C.R. Acad. Sci., Ser. C, 273 (1971) 295.
- 29 L.I. Zakharkin and L.P. Sorokina, Zh. Org. Khim., 6 (1970) 2470.
- F. Näf and P. Degen, Helv. Chim. Acta, 54 (1971) 206. 30
- 31 F.E. Zeigler, E.B. Spitzner and G.K. Wilkins, J. Org. Chem., 36 (1971) 1759.
- 32. C. Frejaville and R. Jullien, Tetrahedron Lett., (1971) 2039.
- 33 J.A. Marshall and T.M. Warne, Jr., J. Org. Chem., 36 (1971) 178.
- J.A. Marshall and G.M. Cohen, J. Org. Chem., 36 (1971) 877. 34
- 35
- J.A. Marshall and A.E: Greene, J. Org. Chem., 36 (1971) 2035. J.A. Marshall and R.A. Ruden, Tetrahedron Lett., (1971) 2875. 36
- 37 J.W. Huffman and M.L. Mole, Tetrahedron Lett., (1971) 501.
- 38 C.P. Casey and R.A. Boggs, Tetrahedron Lett., (1971) 2455. 39 N.T. Luong-Thi and H. Rivière, Tetrahedron Lett., (1971) 587.
- 40 J.A. Marshall, R.A. Ruden, L.K. Hirsch and M. Phillippe, Tetrahedron Lett., (1971) 3795.
- 41 J.-C. Dubois, C. Lion and C. Moutineau, Tetrahedron Lett., (1971) 177.
- 42 E.N. Cain, Tetrahedron Lett., (1971) 1865.
- N.T. Luong-Thi, H. Rivière, J.P. Bégué and C. Forestier, Tetrahedron Lett., (1971) 2113. 43
- 44 J.-C. Dubois, M. Boussu and C. Lion, Tetrahedron Lett., (1971) 829.
- 45 F. De Jong and M.J. Janssen, J. Org. Chem., 36 (1971) 1645.
- 46 D.M. Wieland and C.R. Johnson, J. Amer. Chem. Soc., 93 (1971) 3047.
- S.A. Humphrey, J.L. Herrman and R.H. Schlessinger, Chem. Commun., (1971) 1244. 47
- M. Tamura and J. Kochi, Synthesis, (1971) 303. 48
- M. Tamura and J. Kochi, J. Amer. Chem. Soc., 93 (1971) 1485. 49
- M. Tamura and J. Kochi, Bull. Chem. Soc. Jap., 44 (1971) 3063. 50
- 51 J.F. Normant and M. Bourgain, Tetrahedron Lett., (1971) 2583.
- 52 H.A. Staab, J. Ipaktschi and A. Nissen, Chem. Ber., 104 (1971) 1182.
- 53 M. Stefanović, L.J. Kristić and S. Mladenović, Tetrahedron Lett., (1971) 3311.
- 54 O. Wennerström, Acta Chem. Scand., 25 (1971) 789.
- 55 R.F. Curtis and J.A. Taylor, J. Chem. Soc. C, (1971) 186.
- 56 M. Nilsson, C. Ullenices and O. Wennerström, Tetrahedron Lett., (1971) 2713.
- 57 T. Shirafuji, Y. Yamamoto and H. Nozaki, J. Org. Chem., 27 (1971) 5353.
- M.W. Rathke and A. Lindert, J. Amer. Chem. Soc., 93 (1971) 4605. 58
- 59 T. Mokaiyama, K. Narasaka, K. Maekawa and M. Furusato, Bull. Chem. Soc. Jap., 44 (1971) 2285.
- T. Koyano and O. Watanabe, Bull. Chem. Soc. Jap., 44 (1971) 1378. 60 .
- 61 T. Koyano, Bull. Chem. Soc. Jap., 44 (1971) 1158.

- W.C. Baird, Jr., J.H. Surridge and M. Buza, J. Org. Chem., 36 (1971) 2088. 62
- W.C. Baird, Jr. and J.H. Surridge, J. Org. Chem., 36 (1971) 2898. 63
- W.C. Baird, Jr., J.H. Surridge and M. Buza, J. Org. Chem., 36 (1971) 3324. 64
- S. Vemura, A. Tabata, Y. Kimura and K. Ichikama, Bull. Chem. Soc. Jap., 44 (1971) 1973. 65
- E.W. Bennett and P.J. Orenski, J. Organometal. Chem., 28 (1971) 137. 66
- 67 F.W. Fowler, Angew. Chem., Int. Ed. Engl., 10 (1971) 135.
- 68 D.J. Burton and L.J. Kehoe, J. Org. Chem., 36 (1971) 2596.
- C.J.R. Adderley, J.W. Nebzydoski, M.A. Battiste, R. Baker and D.E. Halliday, Tetrahedron Lett., 69 (1971) 3545.
- S.R. Landor, P.M. Greaves, M. Kulli and P.D. Landor, J. Chem. Soc. C, (1971) 667. 70
- T. Saegusa, Y. Ito, K. Yonezawa, Y. Inubushi and S. Tomita, J. Amer. Chem. Soc., 93 (1971) 71 4049.
- W.C. Truce and C.T. Goralski, J. Org. Chem., 36 (1971) 2536. 72
- 73 Y. Amiel, J. Org. Chem., 36 (1971) 3691.
- Y. Amiel, J. Org. Chem., 36 (1971) 3697. 74
- Y. Amiel, Tetrahedron Lett., (1971) 661. 75
- 76 C.S. Wang and J.P. Easterley, Tetrahedron, 27 (1971) 2581.
- G.N. Walker, D. Alkalay, A.R. Engle and R.J. Kempton, J. Org. Chem., 36 (1971) 466. 77
- H. Stetter and E. Tresper, Justus Liebigs Ann. Chem., 746 (1971) 1. 78
- 79 L. Lizzani, R. Luft and J.P. Rabine, Bull. Soc. Chim. Fr., (1971) 4589.
- 80 K. Ichikawa, Y. Ikeda and S. Uemura, Chem. Commun., (1971) 169.
- 81 J.K. Kochi and C.L. Jenkins, J. Org. Chem., 36 (1971) 3095.
- C.F. Lane, J. Organometal. Chem., 31 (1971) 421. 82
- 83 C.A. Cummings and D.J. Milner, J. Chem. Soc. C, (1971) 1571.
- 84 W. Kawai, M. Ogawa and T. Ichihashi, J. Polym. Sci., Part A-1, 9 (1971) 1599.
- K. Kaeriyama and Y. Yamakazi, Bull. Chem. Soc. Jap., 44 (1971) 3099. P.G. Gassman and T.J. Atkins, J. Amer. Chem. Soc., 93 (1971) 4597. 85
- 86
- P.G. Gassman and F.J. Williams, Tetrahedron Lett., (1971) 1409. 87
- C.J. Attridge and S.J. Maddock, J. Organometal. Chem., 26 (1971) C65. 88
- H.W. Moore and R.J. Wikholm, Chem. Commun., (1971) 1073. 89
- R.S. Marmor and D. Seyferth, J. Org. Chem., 36 (1971) 128. 90
- 91 C. Walling and S. Kato, J. Amer. Chem. Soc., 93 (1971) 4275.
- I. Mochida, T. Jitsumatsu, A. Kato and T. Seiyama, Bull. Chem. Soc. Jap., 44 (1971) 2595. 92
- 93 I. Mochida, S. Hayata, A. Kato and T. Seiyama, Bull. Chem. Soc. Jap., 44 (1971) 2282.
- 94 L. Reich, B.R. Jadmicek and S.S. Stivala, J. Polym. Sci., Part A-1, (1971) 231.
- 95 R.J. Theissen, J. Org. Chem., 36 (1971) 752.
- 96 I. Mochida, Y. Anju, H. Yamamoto, A. Kato and T. Sejyama, Bull. Chem. Soc. Jap., 44 (1971) 3305.
- D. Wulfman, B.W. Peace and E.K. Steffen, Chem. Commun., (1971) 1360. 97
- B.W. Peace and D.S. Wulfman, Tetrahedron Lett., (1971) 3799. 98
- C.L. Jenkins and J.K. Kochi, J. Org. Chem., 36 (1971) 3103. 99
- A.R. Gallopo and J.O. Edwards, J. Org. Chem., 36 (1971) 4089. 100
- M. Ishige, K. Sakai, M. Kawai and K. Hata, Bull. Chem. Soc. Jap., 44 (1971) 1917. 101
- S.A. Dua, A.E. Jukes and H. Gilman, Organometal. Chem. Syn., 1 (1970) 87. 102
- 103 H.C. Brinkoff, A.G. Matthijssen and C.G. Oomes, Inorg. Nucl. Chem. Lett., 7 (1971) 87.
- 104 A.P. Gaughan, R.F. Ziolo and Z. Dori, Inorg. Chem., 10 (1971) 2776.
- 105 R.F. Ziolo, A.P. Gaughan, Z. Dori, C.G. Pierpont and R. Eisenberg, Inorg. Chem., 10 (1971) 1289.
- I.G. Malykhina, M.A. Kazankova and I.F. Tutsenko, J. Gen. Chem. USSR, 41 (1971) 2122. 106
- 107 S.A. Bezman, M.R. Chutchill and J.A. Osbro, J. Amer. Chem. Soc., 93 (1971) 2063.
- 108 S.J. Lippard and G.J. Palenik, Inorg. Chem., 10 (1971) 1322.
- H. Beall, C.H. Bushweller and M. Grace, Inorg. Nucl. Chem. Lett., 7 (1971) 641. 109
- 110 C.H. Bushweller, H. Beall, M. Grace, W.J. Dewkett and H.S. Bilofsky, J. Amer. Chem. Soc., 93 (1971) 2145.
- N.J. DeStefano and J.L. Burmeister, Inorg. Chem., 10 (1971) 998. 111
- T.L. Blundell and H.M. Powell, J. Chem. Soc. A, (1971) 1685. 112
- M. Casey and A.R. Manning, J. Chem. Soc. A, (1971) 2989. 113
- 114 F. Cariati and L. Naldini, Inorg. Chem. Acta, 5 (1971) 172.
- 115 P.L. Bellon, F. Cariata, M. Manassero, L. Naldini and M. Sansoni, Chem. Commun., (1971) 1423.

116 J. Trotter and C.S. Gibbons, J. Chem. Soc. A. (1971) 2058.

- 117 F.H. Allen and D. Rogers, J. Chem. Soc. B, (1971) 257.
- 118 O. Ermer, H. Eser and J.D. Dunitz, Helv. Chim. Acta, 54 (1971) 2469.
- 119 P. Ganis, V. Guiliano and V. Lepore, Tetrahedron Lett., (1971) 765.
- 120 E.A. Hall Griffith and E.L. Amma, J. Amer. Chem. Soc., 93 (1971) 3167.
- 121 C.A. Maier and I.C. Paul, Chem. Commun., (1971) 181.
- 122 F. Leh, S.K. Wong and J.K.S. Wan, Can. J. Chem., 49 (1971) 2760.
- 123 D.S. Barnes, G.J. Ford, L.D. Pettit and C. Sherrington, Chem. Commun., (1971) 690.
- 124 D.S. Barnes, G.J. Ford and L.D. Pettit, J. Chem. Soc. A, (1971) 2883.
- 125 J. Solodar and J.P. Petrovich, Inorg. Chem., 10 (1971) 395.
- 126 H.W. Quinn and R.L. Van Gilder, Can. J. Chem., 49 (1971) 1323.
- 127 A.N. Petrov, O.N. Temkin and M.I. Bogdanov, Zh. Fiz. Khim., 45 (1971) 2349.
- 128 C.F. Wilcox, Jr. and W. Gaal, J. Amer. Chem. Soc., 93 (1971) 2453.
- 129 T.G. Sukhova, O.L. Kaliya, O.N. Tempkin and R.M. Flid, Russ. J. Inorg. Chem., 16 (1971) 816.
- 130 A.N. Petrov, O.N. Temkin and M.I. Bogdanov, Zh. Fiz. Khim., 44 (1971) 2766.
- 131 D.R. Gee and J.K.S. Wan, Can. J. Chem., 49 (1971) 160.
- 132. M. Regit, A. Liedhegener, U. Eckstein, M. Martin and W. Anschütz, Justus Liebigs Ann. Chem., 748 (1971) 207.
- 133 L.A. Paquette, Accts. Chem. Res., 4 (1971) 280.
- 134 H.H. Westberg and H. Ona, Chem. Commun., (1971) 248.
- 135 L.A. Paquette, R.S. Beckley and T. McCreadic, Tetrahedron Lett., (1971) 775.
- 136 L.A. Paquette and J.C. Stowell, J. Amer. Chem. Soc., 93 (1971) 2459.
- 137 W.G. Dauben, C.H. Schalhorn and D.L. Whalen, J. Amer. Chem. Soc., 93 (1971) 1446.
- 138 M. Sakai, H. Yamaguchi, H.H. Westberg and S. Masamune, J. Amer. Chem. Soc., 93 (1971) 1043.
- 139 S.A. Sherrod and R.G. Bergman, J. Amer. Chem. Soc., 93 (1971) 1925.
- 140 D.R. Kelsey and R.G. Bergman, J. Amer. Chem. Soc., 93 (1971) 1941.
- 141 G.F. Koser, Chem. Commun., (1971) 388.
- 142 M. Sakai and S. Masamune, J. Amer. Chem. Soc., 93 (1971) 4610.
- 143 M. Sakai, H.H. Westberg, H. Yamaguchi and S. Masamune, J. Amer. Chem. Soc., 93 (1971) 4611.
- 144 L.A. Paquette, S.C. Wilson and R.P. Henzel, J. Amer. Chem. Soc., 93 (1971) 1288.
- 145 L.A. Paquette, R.P. Henzel and S.C. Wilson, J. Amer. Chem. Soc., 93 (1971) 2335.
- 146 L.A. Paquette and S.C. Wilson, J. Amer. Chem. Soc., 93 (1971) 5934.
- 148 W.R. Moore, L.N. Bell and G.P. Daumit, J. Org. Chem., 36 (1971) 1694.
- 149 P. Warner, Tetrahedron Lett., (1971) 723.
- 150 L.A. Paquette, Chem. Commun., (1971) 1076.
- 151 P.W.N.M. Van Leeuwen, H.C. Volger, M. Appelman and C.J. Gaasbeek, J. Organometal. Chem., 33 (1971) C49.
- 152 M. Tamura and J. Kochi, J. Amer. Chem. Soc., 93 (1971) 1483.
- 153 G.T. Rogers and T.L.V. Ulbricht, J. Chem. Soc. C, (1971) 2995.
- 154 T. Masuike, N. Furuwaka and S. Oae, Bull. Chem. Soc. Jap., 44 (1971) 448.
- 155 B. Fuchs, J. Lehmaun and S. Paech, Chem. Ber., 104 (1971) 668.
- 157 R. Minisci, R. Bernardi, F. Bertini, R. Galli and M. Perchinummi, Tetrahedron, 27 (1971) 3575.
- 158 A.N. Nesmeyanov, V.A. Sazonova and N.N. Sedova, Dokl. Akad. Nauk SSSR, 198 (1971) 590.
- 159 I.P. Beletskaya, K.P. Butin and O.A. Reutov, Organometal. Chem. Rev. A, 7 (1971) 51.
- 160 M.A. Bennett, K. Hoskins, W.R. Kneen, R.S. Nyholm, P.B. Hitchcock, R. Mason, G.B. Robertson and A.D.C. Towl, J. Amer. Chem. Soc., 93 (1971) 4591.
- 161 M.A. Bennett, K. Hoskins, W.R. Kneen, R.S. Nyholm, R. Mason, P.B. Hitchcock, G.B. Robertson and A.D.C. Towl, J. Amer. Chem. Soc., 93 (1971) 4592.
- 162 G.C. Stocco and R.S. Tobias, J. Amer. Chem. Soc., 93 (1971) 5057.
- 163 A. Shiotani and H. Schmidbaur, Chem. Ber., 104 (1971) 2838.
- 164 S.W. Krauhs, G.C. Stocco and R.S. Tobias, Inorg. Chem., 10 (1971) 1365.
- 165 F. Stocco, G.C. Stocco, W.M. Scovell and R.S. Tobias, Inorg. Chem., 10 (1971) 2639.
- 166 A. Shiotani, H.F. Klein and H. Schmidbaur, J. Amer. Chem. Soc., 93 (1971) 1555.
- 167 H. Schmidbaur, A. Shiotani and H.F. Klein, Chem. Ber., 104 (1971) 2831.
- 168 H. Schmidbaur and A. Shiotani, Chem. Ber., 104 (1971) 2821.
- 169 E.G. Perevalova, T.V. Baukova, E.I. Goryunov and K.I. Grandberg, Izv. Akad. Nauk SSSR, Ser. Khim., (1970) 2148.
- 170 R. Uson, P. Royo and A. Laguna, Inorg. Nucl. Chem. Lett., 7 (1971) 1037.
- 171 C.-C. Su, J. Amer. Chem. Soc., 93 (1971) 5653.
- 172 C.H. Campbell and M.L.H. Green, J. Chem. Soc. A, (1971) 3282.
- 173 G.L. McClure and W.H. Baddley, J. Organometal. Chem., 27 (1971) 155.

- 174 E.G. Parevalova, D.A. Lemenovskii, K.I. Grandberg and A.N. Nesmeyanov, Dokl. Akad. Nauk SSSR, 199 (1971) 832.
- 175 C.J. Gilmore and P. Woodward, Chem. Commun., (1971) 1233.
- 176 J.H. Waters, T.J. Bergendahl and S.R. Lewis, Chem. Commun., (1971) 834.
- 177 V.I. Dubinski and G.V. Demidova, Russ. J. Inorg. Chem., 16 (1971) 134.
- 178 D. Negoiu and L.M. Baloiu, Z. Anorg. Allg. Chem., 382 (1971) 92.
- 179 A. Fusi, R. Ugo, F. Fox, A. Pasini and S. Cenini, J. Organometal. Chem., 26 (1971) 417.

÷